10 research outputs found

    A lightweight secure adaptive approach for internet-of-medical-things healthcare applications in edge-cloud-based networks

    Get PDF
    Mobile-cloud-based healthcare applications are increasingly growing in practice. For instance, healthcare, transport, and shopping applications are designed on the basis of the mobile cloud. For executing mobile-cloud applications, offloading and scheduling are fundamental mechanisms. However, mobile healthcare workflow applications with these methods are widely ignored, demanding applications in various aspects for healthcare monitoring, live healthcare service, and biomedical firms. However, these offloading and scheduling schemes do not consider the workflow applications' execution in their models. This paper develops a lightweight secure efficient offloading scheduling (LSEOS) metaheuristic model. LSEOS consists of light weight, and secure offloading and scheduling methods whose execution offloading delay is less than that of existing methods. The objective of LSEOS is to run workflow applications on other nodes and minimize the delay and security risk in the system. The metaheuristic LSEOS consists of the following components: adaptive deadlines, sorting, and scheduling with neighborhood search schemes. Compared to current strategies for delay and security validation in a model, computational results revealed that the LSEOS outperformed all available offloading and scheduling methods for process applications by 10% security ratio and by 29% regarding delays

    Potent blockchain-rnabled socket RPC Internet of Healthcare Things (IoHT) framework for medical enterprises

    Get PDF
    Present-day intelligent healthcare applications offer digital healthcare services to users in a distributed manner. The Internet of Healthcare Things (IoHT) is the mechanism of the Internet of Things (IoT) found in different healthcare applications, with devices that are attached to external fog cloud networks. Using different mobile applications connecting to cloud computing, the applications of the IoHT are remote healthcare monitoring systems, high blood pressure monitoring, online medical counseling, and others. These applications are designed based on a client–server architecture based on various standards such as the common object request broker (CORBA), a service-oriented architecture (SOA), remote method invocation (RMI), and others. However, these applications do not directly support the many healthcare nodes and blockchain technology in the current standard. Thus, this study devises a potent blockchain-enabled socket RPC IoHT framework for medical enterprises (e.g., healthcare applications). The goal is to minimize service costs, blockchain security costs, and data storage costs in distributed mobile cloud networks. Simulation results show that the proposed blockchain-enabled socket RPC minimized the service cost by 40%, the blockchain cost by 49%, and the storage cost by 23% for healthcare applications

    Deep attention network for pneumonia detection using chest X-ray images

    Get PDF
    In computer vision, object recognition and image categorization have proven to be difficult challenges. They have, nevertheless, generated responses to a wide range of difficult issues from a variety of fields. Convolution Neural Networks (CNNs) have recently been identified as the most widely proposed deep learning (DL) algorithms in the literature. CNNs have unquestionably delivered cutting-edge achievements, particularly in the areas of image classification, speech recognition, and video processing. However, it has been noticed that the CNN-training assignment demands a large amount of data, which is in low supply, especially in the medical industry, and as a result, the training process takes longer. In this paper, we describe an attention-aware CNN architecture for classifying chest X-ray images to diagnose Pneumonia in order to address the aforementioned difficulties. Attention Modules provide attention-aware properties to the Attention Network. The attention-aware features of various modules alter as the layers become deeper. Using a bottom-up top-down feedforward structure, the feedforward and feedback attention processes are integrated into a single feedforward process inside each attention module. In the present work, a deep neural network (DNN) is combined with an attention mechanism to test the prediction of Pneumonia disease using chest X-ray pictures. To produce attention-aware features, the suggested network was built by merging channel and spatial attention modules in DNN architecture. With this network, we worked on a publicly available Kaggle chest X-ray dataset. Extensive testing was carried out to validate the suggested model. In the experimental results, we attained an accuracy of 95.47% and an F- score of 0.92, indicating that the suggested model outperformed against the baseline models

    Hybrid models for breast cancer detection via transfer learning technique

    Get PDF
    Currently, breast cancer has been a major cause of deaths in women worldwide and the World Health Organization (WHO) has confirmed this. The severity of this disease can be minimized to the large extend, if it is diagnosed properly at an early stage of the disease. Therefore, the proper treatment of a patient having cancer can be processed in better way, if it can be diagnosed properly as early as possible using the better algorithms. Moreover, it has been currently observed that the deep neural networks have delivered remarkable performance for detecting cancer in histopathological images of breast tissues. To address the above said issues, this paper presents a hybrid model using the transfer learning to study the histopathological images, which help in detection and rectification of the disease at a low cost. Extensive dataset experiments were carried out to validate the suggested hybrid model in this paper. The experimental results show that the proposed model outperformed the baseline methods, with F-scores of 0.81 for DenseNet + Logistic Regression hybrid model, (F-score: 0.73) for Visual Geometry Group (VGG) + Logistic Regression hybrid model, (F-score: 0.74) for VGG + Random Forest, (F-score: 0.79) for DenseNet + Random Forest, and (F-score: 0.79) for VGG + Densenet + Logistic Regression hybrid model on the dataset of histopathological images

    Texture descriptors via stable distributions

    Get PDF
    In this paper, we present a texture descriptor which hinges in the use of the local image statistics so as to recover a compact representation of the texture under study. To this end, here, we make use of stable distributions and their link to Fourier analysis so as to provide a means to compute in a computationally efficient manner a local texture descriptor. This link between stochastic processes and Fourier analysis provides an efficient means to compute texture spectra which can be interpreted as a probability distribution for purposes of recognition and analysis. Making use of our local descriptor, we provide a metric between texture pairs that can be made devoid of rotations on the texture plane by recovering the optimal linear transformation via procrustes analysis. We demonstrate the utility of our descriptor and its associated metric on a database of real-world textures.Full Tex

    An affine invariant hyperspectral texture descriptor based upon heavy-tailed distributions and fourier analysis

    Get PDF
    In this paper, we address the problem of recovering a hyperspectral texture descriptor. We do this by viewing the wavelength-indexed bands corresponding to the texture in the image as those arising from a stochastic process whose statistics can be captured making use of the relationships between moment generating functions and Fourier kernels. In this manner, we can interpret the probability distribution of the hyper-spectral texture as a heavy-tailed one which can be rendered invariant to affine geometric transformations on the texture plane making use of the spectral power of its Fourier cosine transform. We do this by recovering the affine geometric distortion matrices corresponding to the probability density function for the texture under study. This treatment permits the development of a robust descriptor which has a high information compaction property and can capture the space and wavelength correlation for the spectra in the hyperspectral images. We illustrate the utility of our descriptor for purposes of recognition and provide results on real-world datasets. We also compare our results to those yielded by a number of alternatives.Full Tex

    The influence of compositional and structural diversity on forest productivity

    No full text
    Abstract. Several salient object detection approaches have been published which have been assessed using different evaluation scores and datasets resulting in discrepancy in model comparison. This calls for a methodological framework to compare existing models and evaluate their pros and cons. We analyze benchmark datasets and scoring techniques and, for the first time, provide a quantitative comparison of 35 stateof-the-art saliency detection models. We find that some models perform consistently better than the others. Saliency models that intend to predict eye fixations perform lower on segmentation datasets compared to salient object detection algorithms. Further, we propose combined models which show that integration of the few best models outperforms all models over other datasets. By analyzing the consistency among the best models and among humans for each scene, we identify the scenes where models or humans fail to detect the most salient object. We highlight the current issues and propose future research directions.

    EEG Channel Selection Based User Identification via Improved Flower Pollination Algorithm

    No full text
    The electroencephalogram (EEG) introduced a massive potential for user identification. Several studies have shown that EEG provides unique features in addition to typical strength for spoofing attacks. EEG provides a graphic recording of the brain’s electrical activity that electrodes can capture on the scalp at different places. However, selecting which electrodes should be used is a challenging task. Such a subject is formulated as an electrode selection task that is tackled by optimization methods. In this work, a new approach to select the most representative electrodes is introduced. The proposed algorithm is a hybrid version of the Flower Pollination Algorithm and β-Hill Climbing optimizer called FPAβ-hc. The performance of the FPAβ-hc algorithm is evaluated using a standard EEG motor imagery dataset. The experimental results show that the FPAβ-hc can utilize less than half of the electrode numbers, achieving more accurate results than seven other methods
    corecore